Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 4338, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35288586

RESUMEN

Hadal trenches are depocenters for organic material, and host intensified benthic microbial activity. The enhanced deposition is presumed to be reflected in elevated meiofaunal standing-stock, but available studies are ambiguous. Here, we investigate the distribution of meiofauna along the Atacama Trench axis and adjacent abyssal and bathyal settings in order to relate the meiofauna densities to proxies for food availability. Meiofauna densities peaked at the sediment surface and attenuated steeply with increasing sediment depth. The distribution mirrored the vertical profile of the microbial-driven oxygen consumption rate demonstrating a close linkage between microbial activity and meiofauna density. Meiofaunal standing-stock along the trench axis varied by a factor of two, but were markedly higher than values from the abyssal site at the oceanic plate. Overall, meiofaunal densities poorly correlated with common proxies for food availability such as total organic carbon and phytopigments, but strongly correlated with the microbial benthic O2 consumption rate. We argue that microbial biomass likely represents an important meiofaunal food source for hadal meiofauna. Observations from three trench systems underlying surface water of highly different productivity confirmed elevated meiofaunal densities at the trench axis as compared to abyssal sites on oceanic plates. Food availability appear to drive elevated abundance and variations in meiofauna densities in hadal sediments.


Asunto(s)
Sedimentos Geológicos , Biomasa , Océanos y Mares
2.
Limnol Oceanogr Methods ; 16(10): 696-709, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30450019

RESUMEN

Headwater streams are important in the carbon cycle and there is a need to better parametrize and quantify exchange of carbon-relevant gases. Thus, we characterized variability in the gas exchange coefficient (k 2) and dissolved oxygen (O2) gas transfer velocity (k) in two lowland headwaters of the River Avon (UK). The traditional one-station open-water method was complemented by in situ quantification of riverine sources and sinks of O2 (i.e., groundwater inflow, photosynthesis, and respiration in both the water column and benthic compartment) enabling direct hourly estimates of k 2 at the reach-scale (~ 150 m) without relying on the nighttime regression method. Obtained k 2 values ranged from 0.001 h-1 to 0.600 h-1. Average daytime k 2 were a factor two higher than values at night, likely due to diel changes in water temperature and wind. Temperature contributed up to 46% of the variability in k on an hourly scale, but clustering temperature incrementally strengthened the statistical relationship. Our analysis suggested that k variability is aligned with dominant temperature trends rather than with short-term changes. Similarly, wind correlation with k increased when clustering wind speeds in increments correspondent with dominant variations (1 m s-1). Time scale is thus an important consideration when resolving physical drivers of gas exchange. Mean estimates of k 600 from recent parametrizations proposed for upscaling, when applied to the settings of this study, were found to be in agreement with our independent O2 budget assessment (within < 10%), adding further support to the validity of upscaling efforts aiming at quantifying large-scale riverine gas emissions.

3.
J Environ Qual ; 42(4): 1267-73, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24216378

RESUMEN

Long-term measurements of molecular oxygen (O) dynamics in wetlands are highly relevant for understanding the effects of water level changes on net greenhouse gas budgets in these ecosystems. However, such measurements have been limited due to a lack of suitable measuring equipment. We constructed an O optode sensor array for long-term in situ measurements in soil and sediment. The new device consists of a 1.3-m-long, cylindrical, spear-shaped rod equipped with 10 sensor spots along the shaft. Each spot contains a thermocouple fixed with a robust fiberoptic O optode made by immobilizing a layer of Pt(II) meso-tetra(pentafluorophenyl)porphine in polystyrene at the end of a 2-mm polymethyl methacrylate plastic fiber. Temperature and O optode readings are collected continuously by a data logger and a multichannel fiberoptic O meter. The construction and measuring characteristics of the sensor array system are presented along with a novel approach for temperature compensation of O optodes. During in situ application over several months in a peat bog, we used the new device to document pronounced variations in O distribution after marked shifts in water level. The measurements showed anoxic conditions below the water level but also diel variations in O concentrations in the upper layer presumably due to rhizospheric oxidation by the main vegetation The new field instrument thus enables new and more detailed insights to the in situ O dynamics in wetlands.


Asunto(s)
Oxígeno , Suelo , Ecosistema , Agua , Humedales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...